Preview

Natural resources

Advanced search

Fluctuations of the surface ozone field in Belarus resulted from meteorological conditions and anthropogenic air pollution

Abstract

The results of comparison between the concentrations of surface ozone, measured in all regional cities of Belarus in different years, and those calculated within the concept of surface ozone field homogeneity over the territory of Belarus, are presented. Based on the experimental data, the climatic normal of surface ozone in clear atmosphere and the dependence of ozone on meteorological conditions and anthropogenic pollution were used. The results of the comparison are in a good agreement. The cases of inconsistency between the computation and experimental results as well as the weak points of the technique and some ways of their correction are discussed. Among the important unsolved problems there is the absence of international certification for the measuring equipment involved in the process of data collection and, therefore, for the obtained results, which, undoubtedly,
affects the quality of the calculation procedure, based on the scope of measurement data. Yet, this does not hamper improving and adjusting the technique for observation data processing and analysis. Both directions – enhancing the network of observations and advancing methods for data analysis – ought to be developed concurrently so that with enhancing the network, improving the quality of measurements and extending the list of monitored pollutants one would only have to enlarge initial database and use elaborated processing techniques.

About the Authors

V. V. Bozhkova
National Ozone Monitoring Research Centre of the Belarusian State University, Minsk
Belarus


A. M. Lyudchik
National Ozone Monitoring Research Centre of the Belarusian State University, Minsk
Belarus


E. A. Melnik
Republican Center for Hydrometeorology, Radiаtion Control and Envizonmental Monitoring, Minsk
Belarus


References

1. Климатическая норма приземного озона в чистой атмосфере Беларуси / В. В. Божкова [и др.] // Природные ресурсы. – 2019. – № 2. – С. 94–103.

2. Role of Ozone Deposition in the Occurrence of the Spring Maximum / A. Liudchik [et al.] // Atmosphere-Ocean. – 2015. – Vol. 53, no. 1. – P. 42–49. doi: 10.1080 /07055900.2013.853284

3. Флуктуации поля концентрации приземного озона, обусловленные меняющимися метеоусловиями и степенью загрязнения воздуха / Л. М. Болотько [и др.] // Экологический вестник. – 2016. – № 3. – С. 45–52.

4. Статистическая оценка антропогенного воздействия на приземный озон / А. М. Людчик [и др.] // Природные ресурсы. – 2015. – № 1. – С. 95–105.

5. Людчик, А. М. Многолетний тренд приземного озона / А. М. Людчик, В. И. Покаташкин // Природные ресурсы. – 2014. – № 1. – С. 97–105.

6. Людчик, А. М. Климатология приземного озона в г. Минске / А. М. Людчик, В. И. Покаташкин // Природные ресурсы. – 2014. – № 2. – С. 112–118.

7. Звягинцев, А. М. Изменчивость приземного озона в окрестностях Москвы: результаты десятилетних регулярных наблюдений / А. М. Звягинцев, И. Н. Кузнецова // Изв. РАН. Физика атмосферы и океана. – 2002. – Т. 38, № 4. – С. 486–495.

8. Daily Peak Ozone Forecast in Istanbul / Y. S. Unal [et al.] // Int. J. Remote Sensing. – 2010. – Vol. 31, no. 2. – P. 551–561.

9. Analysis of the Relationship between Changes in Meteorological Conditions and the Variation in Summer Ozone Levels over the Central Kanto Area / M. Khiem [et al.] // Advances in Meteorology. – 2010. – Vol. 2010. – 13 p. doi: 10.1155/2010/349248

10. Multiple Regression Analysis of Ground level Ozone and its Precursor Pollutants in Coastal Mega City of Mumbai, India / S. A. Marathe [et al.] // MOJ Eco. Environ. Sci. – 2017. – Vol. 2, no. 6. – P. 8. doi: 10.15406/mojes.2017.02.00041

11. Архив погоды [Электронный ресурс]. – Режим доступа: https://rp5.ru. – Дата доступа: 28.05.2019.

12. A review of Statistical Methods for the Meteorological Adjustment of Tropospheric Ozone / M. L.Thompson [et al.] // Atmospheric Environment. – 2001. – Vol. 35. – P. 617–630.

13. Space and Time Scales in Ambient Ozone Data / S. T. Rao [et al.] // Bulletin of the American Meteorological Society. – 1997. – Vol. 78, no. 10. – P. 2153–2166.

14. Hou, X. The Impacts of Summer Monsoons on the Ozone Budget of the Atmospheric Boundary Layer of the AsiaPacific Region / X. Hou, B. Zhu, D. Fei, D. Wang // Science of the Total Environment. – 2015. – Vol. 502. – P. 641–649.

15. Transfer Standards for Calibration of Air Monitoring Analyzers for Ozone (Technical Assistance Document) EPA-600/4- 79-056 (1979)

16. Kleinman, L. I. The Dependence of Tropospheric Ozone Production Rate on Ozone Precursors / L. I. Kleinman // Atmospheric Environment. – 2005. – Vol. 39. – P. 575–586.

17. Clapp, L. J. Analysis of the Relationship between Ambient Levels of O3, NO2 and NO as a Function of NOx in the UK / L. J. Clapp, M. E. Jenkin // Atmospheric Environment. – 2001. – Vol. 35. – P. 6391–6405. http://dx.doi.org/10.1016/S1352-2310(01)00378-8

18. Jenkin, M. E. Ozone and Other Secondary Photochemical Pollutants: Chemical Process Governinig their Formation in the Planetary Boundary Layer / M. E. Jenkin, K. C. Clemitshaw // Atmospheric Environment. – 2000. – Vol. 34. – P. 2499–2527.


Review

For citations:


Bozhkova V.V., Lyudchik A.M., Melnik E.A. Fluctuations of the surface ozone field in Belarus resulted from meteorological conditions and anthropogenic air pollution. Natural resources. 2020;(1):80-91. (In Russ.)

Views: 255


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-9810 (Print)