Preview

Природные ресурсы

Расширенный поиск

Трофический статус озерных экосистем и его связь с основными гидроэкологическими характеристиками водоемов (на примере озер Нарочанского региона, Беларусь)

Аннотация

Изучение трофического статуса и его связь с основными гидроэкологическими характеристиками водоемов проводили на 11 озерах Нарочанского региона в 2013–2023 гг., которые представляют собой водоемы в широком диапазоне трофности – от олиго-мезотрофных до высокоэвтрофных. Трофический статус водоемов оценивали по индексу трофического состояния Карлсона (Trophy State Index, TSI). Результаты исследований показали, что TSI является адекватным показателем трофического статуса. Средневзвешенная для всей толщи воды валовая первичная продукция и деструкция планктона демонстрировали сильную и статистически значимую связь с уровнем трофности водоемов, оцененным по TSI. Отмечена сильная связь содержания хлорофилла с концентрацией общего фосфора. Связь хлорофилла с концентрацией общего азота значительно слабее, т. е. в изученных озерах основным лимитирующим биогенным элементом для развития фитопланктона является фосфор. Не отмечено никакой связи содержания хлорофилла и TSI cо средней температурой, а также концентрацией растворенного кислорода в гиполимнионе. Оценка трофического статуса должна быть обязательным элементом проведения любых лимнологических исследований с целью формирования объективного представления о состоянии водного объекта.

Об авторах

Б. В. Адамович
Белорусский государственный университет
Беларусь

Минск



Т. М. Михеева
Белорусский государственный университет
Беларусь

Минск



Р. З. Ковалевская
Белорусский государственный университет
Беларусь

Минск



Т. В. Жукова
Белорусский государственный университет
Беларусь

Минск



Н. В. Дубко
Белорусский государственный университет
Беларусь

Минск



Ю. К. Верес
Белорусский государственный университет
Беларусь

Минск



Список литературы

1. . Dodds, W. K. Expanding the concept of trophic state in aquatic ecosystems: It’s not just the autotrophs / W. K. Dodds, J. J. Cole // Aquat. Sci. – 2007. – № 69. – P. 427–439. https://doi.org/10.1007/s00027-007-0922-1

2. . Каратаев, А. Ю. Факторы, влияющие на макрозообентос озер Беларуси / А. Ю. Каратаев, В. М. Самойленко, Л. Е. Бурлакова // Озерные экосистемы: биологические процессы, антропогенная трансформация, качество воды: материалы Междунар. науч. конф., (Минск – Нарочь, 20–25 сент. 1999 г. / сост. и общ. ред. Т. М. Михеева. – Минск: БГУ, 2000. – С. 123–130.

3. . Naumann, E. Ziel und Hauptprobleme der regionalen Limnologie. Botaniska Notiser / E. Naumann. – Lund, 1927. – Р. 81–103.

4. . Carlson, R. E. A trophic state index for lakes / R. E. Carlson // Limnol. Oceanogr. – 1977. – № 11. – Р. 361–369. https://doi.org/10.4319/lo.1977.22.2.0361

5. . Kratzer, C. R. A Carlson-type trophic state index for nitrogen in Florida Lakes / C. R. Kratzer, P. L. Brezonik // Water Resour. Bull. – 1981. – Vol. 17. – Р. 713–715. https://doi.org/10.1111/j.1752-1688.1982.tb03982.x

6. Long-term variations of the trophic state index in the Narochanskie lakes and its relation with the major hydroecological parameters / B. V. Adamovich [et al.]. – Water Resour. – 2016. – Vol. 43. – Р. 809–817. https://doi.org/10.1134/S009780781605002X

7. . Винберг, Г. Г. Первичная продукция водоемов / Г. Г. Винберг. – Минск: Изд-во АН БССР, 1960. – 329 с.

8. Озера Беларуси: справочник / Б. П. Власов [и др.]. – Минск: Минсктиппроект, 2004. – 284 с.

9. Kovalevskaya, R. Z. Modification of the method of spectrophotometric determination of chlorophyll a in the suspended matter of water bodies / R. Z. Kovalevskaya, H. A. Zhukava, B. V. Adamovich // J. Appl. Spectrosc. – 2020. – Vol. 87, iss. 1. – Р. 72–78. https://doi.org/10.1007/s10812-020-00965-9

10. Руководство по химическому анализу поверхностных вод суши. – Л.: Гидрометеоиздат, 1977. – 541 с.

11. Wetzel, R. G. Limnological analysis / R. G. Wetzel, G. E. Likens. – 3rd ed. – New York, 2000. – 429 c.

12. База данных гидроэкологического мониторинга Нарочанских озер (Беларусь) / Б. В. Адамович [и др.] // Эксперим. биология и биотехнология. – 2024. – № 1. – С. 66–76.

13. R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [Electronic resource]. – Mode ofaccess: https://www.R-project.org. – Date of access: 22.10.2023.

14. Wetzel, R. G. Limnology. Lake and river ecosystems (3nd ed.) / R. G. Wetzel. – New York: Academic, 2001. – 1024 p.

15. Schindler, D. W. Recent advances in the understanding and management of eutrophication / D. W. Schindler // Limnol. Oceanogr. – 2006. – Vol. 51, № 1, part 2. – Р. 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356

16. Relations between variations in the lake bacterioplankton abundance and the lake trophic state: Evidence from the 20-year monitoring / B. V. Adamovich [et al.] // Ecolog. Indic. – 2019. – № 97. – Р. 120–129. https://doi.org/10.1016/j.ecolind.2018.09.049

17. Temporal and spatial distribution of macrozoobenthos in three lakes of different trophic states: a case study of the Narochianskie lakes (Belarus) / B. V. Adamovich [et al.] // Hydrobiol. – 2023. – Vol. 851. – P. 1335–1351. https://doi.org/10.1007/s10750-023-05395-0

18. Naumann, E. Some aspects of the ecology of the limnoplankton, with special reference to the phytoplankton / E. Naumann // Translation from: Svensk Botanisk Tidskrift. – 1919. – Vol. 13, № 2. – Р. 129–163.

19. Hutchinson, G. E. Eutrophication, past and present // Eutrophication: causes, consequences, correctives / G. E. Hutchinson. – Washington, DC: The National Academies Press, 1969. – 670 p.

20. Thienemann, A. Tropische Seen und Seetypenlehre / A. Thienemann // Arch. Hydrobiol. Suppl., 1926. – № 9. – Р. 205–231.

21. Vollenweider, R. A. The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors / R. A. Vollenweider // Tech. Rep. OEKD, DAS (DSZ). – 1968. – Vol. 27. – P. 1–182.

22. Vollenweider, R. A. Advances in defining critical loading levels for phosphorus in lake eutrophication / R. A. Vollenweider // Memorie dell’Istituto Italiano di Idrobiol. – 1976. – Vol. 33. – P. 53–83.

23. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover / M. Søndergaard [et al.] // Hydrobiol. – 2017. – Vol. 795. – Р. 35–48. https://doi.org/10.1007/s10750-017-3110-x

24. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading / M. Søndergaard [et al.] // Aquat. Ecosyst. Health Manag. – 2002 – Vol. 5, № 1. – Р. 19–29. https://doi.org/10.1080/14634980260199936

25. Relationships between chlorophyll-a, phosphorus and nitrogen as fundamentals for controlling phytoplankton biomass in lakes / D. Magumba [et al.] // Environ. Control Biol. – 2013. – Vol. 51, № 4. – P. 179–185. https://doi.org/10.2525/ecb.51.179

26. Smith, V. H. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies / V. H. Smith, J. Shapiro // Environ. Sci. Technol. – 1981. – Vol. 15, № 4. – Р. 444–451. https://doi.org/10.1021/es00086a009

27. Pothoven, S. A. Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan / S. A. Pothoven, H. A. Vanderploeg // J. Great Lakes Res. – 2020. – Vol. 46, № 3. – P. 519–527.

28. Relationships of total phosphorus and chlorophyll in lakes worldwide / R. Quinlan [et al.] // Limnol. Oceanogr. – 2021. – Vol. 66. – Р. 392–404. https://doi.org/10.1002/lno.11611

29. McCauley, E. Sigmoid relationships between nutrients and chlorophyll among lakes / E. McCauley, J. A. Downing, S. Watson // Can. J. Fish. Aquat. Sci. – 1989. – Vol. 46, № 7. – Р. 1171–1175. https://doi.org/10.1139/f89-152

30. Søndergaard, M. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes / M. Søndergaard, J. P. Jensen, E. Jeppesen // Freshwater Biol. – 2005. – Vol. 50. – Р. 1605–1615. https://doi.org/10.1111/j.1365-2427.2005.01412.x

31. Temporal and seasonal trends in nutrient dynamics and biomass measures in lakes Michigan and Ontario in response to phosphorus control / T. H. Johengen [et al.] // Can. J. Fish. Aquat. Sci. 1994. – Vol. 51, № 11. – Р. 2570–2578. https://doi.org/10.1139/f94-257

32. Seasonal water quality and algal responses to monsoon-mediated nutrient enrichment, flow regime, drought, and flood in a drinking water reservoir. int. / M. Mamun [et al.]. – J. Environ. Res. Public. Health. – 2021. – Vol. 18. – Р. 10714. https://doi.org/10.3390/ijerph182010714

33. Søndergaard, M. Lake Søbygaard, Denmark: Phosphorus dynamics during the first 35 years after an external loading reduction. i AD Steinman & BM Spears (red), Internal phosphorus loading in lakes: causes, case studies, and management / M. Søndergaard, E. Jeppesen // Internal phosphorus loading in lakes: causes, case studies, and management / A. D. Steinman, B. M. Spears (eds.). – Florida: J. Ross Publishing, 2020. – Р. 285–299.

34. Anderson, J. Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction / J. N. Anderson, E. Jeppesen, M. Søndergaard // Freshwater Biol. – 2005. – Vol. 50. – Р. 1589–1593. https://doi.org/10.1111/j.1365-2427.2005.01433.x

35. Rethinking the role of nitrogen and phosphorus in the eutrophication of aquatic ecosystems / A. Smyth [et al.] // EDIS. – 2022. – Vol.1. https://doi.org/10.32473/edis-sg118-2022

36. Filstrup, C. T. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes / C. T. Filstrup, J. A. Downing // Inland Waters. – 2017. – Vol. 7, № 4. – Р. 385–400. https://doi.org/10.1080/20442041.2017.1375176

37. The main factor determining the dynamics of the lake ecosystem under excessive nutrient loading (a case study on the Naroch Lakes) / T. I. Kazantseva [et al.] // Contemp. Probl. Ecol. – 2019. – Vol. 12, № 6. – Р. 544–561. https://doi.org/10.1134/S1995425519060052

38. Cyanobacterial blooms in oligotrophic lakes: Shifting the high-nutrient paradigm / K. L. Reinl [et al.] // Freshwater Biol. – 2021. – Vol. 66. – Р. 1846–1859. https://doi.org/10.1111/fwb.13791

39. Phytoplankton of Lake Bol’shie Shvakshty (Belarus) during the Shift of the Ecosystem from a Macrophyte–Weakly Eutrophic to a Phytoplankton–Hypereutrophic State / T. M. Mikheyeva [et al.] // Contemp. Probl. Ecol. – 2018. – Vol. 11. – Р. 563–575. https://doi.org/10.1134/S1995425518060057

40. Carlson, R. E. A coordinator’s guide to volunteer lake monitoring methods / R. E. Carlson, J. Simpson. – North American Lake Management Society, 1996. – 96 p.


Рецензия

Для цитирования:


Адамович Б.В., Михеева Т.М., Ковалевская Р.З., Жукова Т.В., Дубко Н.В., Верес Ю.К. Трофический статус озерных экосистем и его связь с основными гидроэкологическими характеристиками водоемов (на примере озер Нарочанского региона, Беларусь). Природные ресурсы. 2024;(2):30-29.

For citation:


Adamowich B.V., Mikheeva T.M., Kovalevskaya R.Z., Zhukova T.V., Dubko N.V., Veres Yu.K. Trophic state of lake ecosystems and its relationship with the main hydroecological characteristics of water bodies: a case study of the lakes of Narochansky region (Belarus). Natural resources. 2024;(2):30-29. (In Russ.)

Просмотров: 23


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-9810 (Print)