Preview

Природные ресурсы

Расширенный поиск

Причины «странного» поведения приземного озона в апреле 2019 г.

Аннотация

Анализируется необычное поведение приземного озона в городах Беларуси в апреле 2019 г.: в первой и третьей декадах месяца амплитуда суточного хода озона была высокая и резко уменьшилась во второй декаде. В качестве возможных причин рассматриваются изменение аэрозольной обстановки, меняющиеся метеорологические условия и уровни антропогенного загрязнения воздуха в городах. Результаты анализа указывают на то, что основной причиной «странного» поведения приземного озона явилось уменьшение вертикальной устойчивости атмосферы, которое привело к более интенсивному рассеянию загрязнений и снижению их концентраций в приземном воздухе. Это способствовало торможению процессов генерации и разрушения приземного озона.

Об авторах

В. В. Божкова
Национальный научно-исследовательский центр мониторинга озоносферы Белорусского государственного университета, Минск
Беларусь


Л. М. Болотько
Национальный научно-исследовательский центр мониторинга озоносферы Белорусского государственного университета, Минск
Беларусь


А. М. Людчик
Национальный научно-исследовательский центр мониторинга озоносферы Белорусского государственного университета, Минск
Беларусь


Н. С. Метельская
Институт физики Национальной академии наук Беларуси, Минск
Беларусь


С. Д. Умрейко
Национальный научно-исследовательский центр мониторинга озоносферы Белорусского государственного университета, Минск
Беларусь


А. П. Чайковский
Институт физики Национальной академии наук Беларуси, Минск
Беларусь


Список литературы

1. AERONET [Electronic resource]. – Mode of access: https://aeronet.gsfc.nasa.gov. – Date of access: 07.06.2019.

2. Marathe, S. A. Multiple Regression Analysis of Ground level Ozone and its Precursor Pollutants in Coastal Mega City of Mumbai, India / S. A. Marathe, S. Murthy, N. Gosawi, M. Herlekar // MOJ Eco Environ Sci. – 2017. – Vol. 2, N 6: 00041. DOI: 10.15406/mojes.2017.02.00041

3. FIRMS [Electronic resource]. – Mode of access: https://earthdata.nasa.gov/data/near-real-time-data/firms. – Date of access: 13.06.2019.

4. HYSPLIT [Electronic resource]. – Mode of access: https://ready.arl.noaa.gov/HYSPLIT_traj.php. – Date of access: 11.08.2019.

5. Clapp, L. J. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK / L. J. Clapp, M. E. Jenkin // Atmospheric Environment. – 2001. – Vol. 35. – P. 6391–6405.

6. The role of local urban traffic and meteorological conditions in air pollution: A data-based case study in Madrid, Spain / I. Laña [et al.] // Atmospheric Environment. – 2016. – Vol. 145. – P. 424‒438. http://doi.org/10.1016/j.atmosenv.2016.09.052

7. Finardi, S. Systematic analysis of meteorological conditions causing severe urban air pollution episodes in the Central Po valley / S. Finardi, U. Pellegrini // In: Institut für Meteorologie und Klimaforschung, Proceedings of the 9th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Garmisch-Partenkirchen (Germany). – 2004. – P. 250–254.

8. Verma, S. S. Effect of Meteorological Conditions on Air Pollution of Surat City / S. S. Verma, B. Desai // Journal of International Environmental Application & Science. – 2008. – Vol. 3, N 5. – P. 358–367.

9. Суточный ход концентраций загрязняющих веществ в атмосферном воздухе городов Беларуси / В. В. Божкова [и др.] // Природные ресурсы. – 2018. – № 2. – С. 79 – 87.

10. Sillman, S. Tropospheric ozone, smog and ozone-NOx-VOC sensitivity / S. Sillman // Treatise on Geochemistry. – 2003. – Vol. 9. – P. 407‒431. https://doi.org/10.1016/B0-08-043751-6/09053-8

11. Avino, P. Mechanism of smog photochemical formation in the urban area of Rome / In: Zerefos, C. S. (Ed.), Proceedings of the Quadrennial Ozone Symposium, Kos (Greece). – 2004. – P. 936–937.

12. Analysis of the Relationship between O3, NO and NO2 in Tianjin, China / S. Han [et al.] // Aerosol and Air Quality Research. – 2011. – Vol. 11. – P. 128–139. doi: 10.4209/aaqr.2010.07

13. GEOS-Chem Model [Electronic resource]. – Mode of access: http://acmg.seas.harvard.edu/geos

14. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation / I. Bey [et al.] // J. Geophys. Res. – 2001. – Vol. 106. – P. 23073–23096.

15. GEOS-5 system [Electronic resource]. – Mode of access: http://gmao.gsfc.nasa.gov/systems/geos5/

16. GEOS-Chem – HEMCO [Electronic resource]. – Mode of access: http://wiki.seas.harvard.edu/geos-chem/index.php/ HEMCO

17. A Community Emissions Data System (CEDS) for Historical Emissions // Global Joint Change Research Institute [Electronic resource]. – Mode of access: http://www.globalchange.umd.edu/ceds/

18. POET, a database of surface emissions of ozone precursors [Electronic resource]. – Mode of access: http://www.aero. jussieu.fr/projet/ACCENT/POET.php

19. Stettler, M. E. J. Air quality and public health impacts of UK airports. Part I: Emissions / M. E. J. Stettler, S. Eastham, S. R. H. Barrett // Atmos. Environ. – 2011. – Vol. 45. – P. 5415–5424. doi:10.1016/j.atmosenv.2011.07.012

20. Revisiting global fossil fuel and biofuel emissions of ethane / Z. A. Tzompa-Sosa [et al.] // J. G. R. Atmosphere. – 2017. – Vol. 122. – P. 2493–2512. doi.org/10.1002/2016JD025767

21. The global budget of ethane and regional constraints on U.S. sources / Y. Xiao [et al.] // J. Geophys. Res. – 2008. – Vol. 113. D21306, doi:10.1029/2007JD009415

22. Yevich, R. An assesment of biofuel use and burning of agricultural waste in the developing world / R. Yevich, J. A. Logan // Global Biogeochem. Cycles. – 2003. – Vol. 17. – Р. 1095. doi:10.1029/2002GB001952.

23. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000 / T. C. Bond [et al.] // Global Biogeochem. Cycles. – 2007. – Vol. 21. – GB2018. doi: 10.1029/2006GB002840

24. GFED – Global Fire Emissions Database [Electronic resource]. – Mode of access: http://www.globalfiredata.org

25. Статистическая оценка антропогенного воздействия на приземный озон / А. М. Людчик [и др.] // Природные ресурсы. – 2015. – № 1. – С. 95–105.

26. Климатическая норма приземного озона в чистой атмосфере Беларуси / В. В. Божкова [и др.] // Природные ресурсы. – 2019. – № 2. – С. 98–107.

27. Божкова, В. В. Флуктуации поля приземного озона в Беларуси, обусловленные метеорологическими условиями и антропогенным загрязнением воздуха / В. В. Божкова, А. М. Людчик, Е. А. Мельник // Природные ресурсы. – 2020. – № 1. – С. 80–91.


Рецензия

Для цитирования:


Божкова В.В., Болотько Л.М., Людчик А.М., Метельская Н.С., Умрейко С.Д., Чайковский А.П. Причины «странного» поведения приземного озона в апреле 2019 г. Природные ресурсы. 2020;(2):94-103.

For citation:


Bozhkova V.V., Bolotsko L.M., Liudchik A.M., Miatelskaya N.S., Umreiko S.D., Chaikovsky A.P. Origins of “unusual” surface ozone behavior in April’2019. Natural resources. 2020;(2):94-103. (In Russ.)

Просмотров: 653


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-9810 (Print)