ПОЧВЕННО-ЗЕМЕЛЬНЫЕ РЕСУРСЫ

SOIL AND LAND RESOURCES ГЛЕБАВА-ЗЯМЕЛЬНЫЯ РЭСУРСЫ

ISSN1810-9810 (Print) УДК [631.42+631.459](476)

Н. Н. Цыбулько¹, **И. И. Жукова**²

¹Международный государственный экологический институт имени А. Д. Сахарова Белорусского государственного университета, Минск, Беларусь, e-mail: nik.nik1966@tut.by

²Белорусский государственный педагогический университет имени Максима Танка,

Минск, Беларусь, e-mail:inn0707@bspu.by

ЭРОЗИОННЫЙ ПОТЕНЦИАЛ РЕЛЬЕФА СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗЕМЕЛЬ БЕЛАРУСИ

Аннотация. Проведен анализ морфометрии (длина и крутизна) склонов пахотных и луговых земель по административным районам и областям Беларуси. Показано, что на сельскохозяйственных землях преобладают склоны крутизной 1—3°, занимающие 39,5 % с колебаниями по областям от 31,8 до 48,2 %. Склоны с крутизной > 10° составляют по республике 2,4 % от общей площади земель. Наиболее подвержены эрозионным процессам обрабатываемые земли, расположенные на склонах крутизной 5° и выше. Высокий удельный вес пахотных земель на таких склонах в Поставском, Браславском, Мозырском и Городокском районах. Около 55 % пахотных и 82 % луговых земель расположено на склонах длиной более 500 м. Площади пахотных и луговых земель на коротких склонах (< 100 м) занимают соответственно 13,2 и 5,5 %. Как правило, короткие склоны отличаются большей крутизной.

Ключевые слова: водная эрозия почв, рельеф, склон, крутизна и длина склона, пахотные и луговые земли

M. M. Tsybulka¹, I. I. Zhukova²

¹International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus, e-mail: nik.nik1966@tut.by ²Belarusian State Pedagogical University named after Maxim Tank, Minsk, Belarus, e-mail:inn0707@bspu.by

EROSION POTENTIAL OF THE RELIEF OF AGRICULTURAL LANDS IN BELARUS

Abstract. The analysis of morphometry (length and steepness) of slopes of arable and meadow lands by administrative districts and regions of Belarus was carried out. It is shown that slopes with a steepness of 1–3° prevail on agricultural lands, occupying 39.5 % with fluctuations in the regions from 31.8 to 48.2 %. Slopes with a steepness of > 10° make up 2.4 % of the total land area in the republic. The most susceptible to erosion processes are cultivated lands located on slopes with a steepness of 5° and above. There is a high proportion of arable land on such slopes in the Postavsky, Braslavsky, Mozyr and Gorodok districts. About 55 % of arable lands and 82 % of meadow lands are located on slopes longer than 500 m. The areas of arable and meadow lands on short slopes (< 100 m) occupy 13.2 and 5.5 %, respectively. As a rule, short slopes are more steep.

Keywords: water erosion of soils, relief, slope, slope steepness, slope length, arable land, meadow land

М. М. Цыбулька¹, І. І. Жукава²

¹Міжнародны дзяржаўны экалагічны інстытут імя А. Д. Сахарава Беларускага дзяржаўнага ўніверсітэта, Мінск, Беларусь, e-mail: nik.nik1966@tut.by
²Беларускі дзяржаўны педагагічны ўніверсітэт імя Максіма Танка, Мінск, Беларусь, e-mail: inn0707@bspu.by

ЭРАЗІЙНЫ ПАТЭНЦЫЯЛ РЭЛЬЕФУ СЕЛЬСКАГАСПАДАРЧЫХ ЗЯМЕЛЬ БЕЛАРУСІ

Анатацыя. Праведзены аналіз марфаметрыі (даўжыня і крутасць) схілаў ворных і лугавых зямель па адміністрацыйных раёнах і абласцях Беларусі. Паказана, што на сельскагаспадарчых землях пераважаюць схілы крутасцю 1—3°, якія займаюць 39,5 % з ваганнямі па абласцях ад 31,8 да 48,2 %. Схілы з крутасцю > 10° складаюць па рэспубліцы 2,4 % ад агульнай плошчы зямель. Найбольш схільныя да эразійных працэсаў апрацаваныя землі, размешчаныя на схілах крутасцю 5° і вышэй. Высокая ўдзельная вага ворных зямель на такіх схілах у Пастаўскім, Браслаўскім, Мазырскім і Гарадоцкім раёнах. Каля 55 % ворных і 82 % лугавых зямель размешчана на схілах даўжынёй больш за 500 м. Плошчы ворных і лугавых зямель на кароткіх схілах (< 100 м) займаюць адпаведна 13,2 і 5,5 %. Як правіла, кароткія схілы адрозніваюцца большай крутасцю.

Ключавыя словы: водная эрозія глеб, рэльеф, схіл, крутасць і даўжыня схілу, ворныя і лугавыя землі

[©] Цыбулько Н. Н., Жукова И. И., 2023

Введение. Водная эрозия почв – одна из серьезнейших экологических и экономических проблем, которые реально определяют национальную безопасность многих стран мира. По данным Глобальной оценки деградации земель, проведенной под эгидой Программы ООН по окружающей среде (UNEP), в мире имеется 1 093,7 млн га почв, подверженных водной и ветровой эрозии [1]. Проблема эрозии почв актуальна и для Беларуси. Водная эрозия вызывается талыми и ливневыми водами и проявляется на склонах в виде смыва верхней части почвенного покрова (плоскостная эрозия) или размыва в глубину (линейная эрозия). Водной эрозии почв подвержено 473,3 тыс. га сельскохозяйственных земель. Эродированные почвы относятся преимущественно к пахотным землям и занимают площадь 361,7 тыс. га. Из общей площади почв, подверженных водной эрозии, 268,3 тыс. га (56%) — слабоэродированные, 120,0 тыс. га (25%) — среднеэродированные, 20,2 тыс. га (4%) — сильноэродированные и 64,7 тыс. га (14%) — намытые почвы [2, 3].

Площади эродированных почв в составе сельскохозяйственных земель республики значительно различаются по регионам страны. Наибольшие площади их в Минской (130,6 тыс. га), Витебской (121,1 тыс. га), Могилевской (113,0 тыс. га) и Гродненской (107,1 тыс. га) областях. В Брестской области общая площадь эродированных земель составляет 50,9 тыс. га, в Гомельской области – 33,7 тыс. га. Доля эродированных почв от общей площади пахотных земель по областям распределяется следующим образом: Гродненская — 13,4 %, Могилевская — 11,2 %, Витебская — 10,7 %, Минская — 9,9 %, Брестская — 6,0 %, Гомельская — 4,0 %.

Основная часть. Степень эрозионной опасности земель зависит от функций многих природных и антропогенных факторов, важнейшим из которых является рельеф. Его роль состоит в преобразовании потенциальной энергии поверхностных вод в кинетическую энергию склоновых потоков. Совокупность свойств рельефа, определяющих его влияние на состояние компонентов склоновых ландшафтов, в широком смысле представляет собой эрозионный потенциал рельефа (ЭПР). При более узком гидромеханическом походе ЭПР – совокупность влияния морфометрических параметров склонов на процессы эрозии. ЭПР – наиболее вариабельный фактор эрозии, и в целом величина его определяется гипсометрическим уровнем и общей расчлененностью территории. В общем виде функция рельефа в эмпирических моделях смыва выглядит как степенная зависимость:

$$W = f(L^p \cdot S^n),$$

где W – средний для склона модуль смыва; S – уклон; L – длина склона; n и p – показатели степени при уклоне и длине соответственно.

Важнейшими характеристиками рельефа, влияющими на интенсивность эрозии почв, являются глубина местных базисов эрозии, величины средних уклонов, длина, крутизна, форма и экспозиция склонов. Сочетание этих параметров рельефа определяет его эрозионный потенциал. Необходимое условие для формирования стока — уклон поверхности, поэтому крутизна склона — одна из характеристик, определяющих потенциальную эрозионную опасность рельефа. Тесная взаимосвязь крутизны склона с эродирующей способностью водного потока обусловлена влиянием уклона на скорость движения воды по склону и энергию потока.

Существуют различные классификации склонов [4, 5]. В табл. 1 представлена классификация по крутизне, предложенная М. Н. Заславским [4].

Название склона по крутизне	Крутизна		Уклон
	градусы	%	7,0,0,1
Слабопологие	< 1	< 1,8	< 0,018
	1–3	1,8-5,2	0,018-0,052
Пологие	4–5	7,0-8,8	0,070-0,088
Слабопокатые	6–7	10,5–12,3	0,105-0,123
Покатые	8–10	14,0–17,6	0,140-0,176
Сильнопокатые	11–15	19,4–26,8	0,194-0,268
Крутые	16–20	28,7–36,4	0,287-0,364
Очень крутые	20-40	36,4-83,9	0,364-0,839
Обрывистые	> 40	> 83,9	> 0,839

Таблица 1. Классификация склонов по крутизне

Для оценки эрозионной опасности сельскохозяйственных земель в зависимости от распределения их по крутизне склонов рекомендуется по карте уклонов определять показатель средневзвешенной крутизны склонов той или иной территории (хозяйства, района, области) по формуле:

$$I_{CD,B3} = (i_1 S_1 + i_2 S_2 + i_3 S_3) / 100,$$

где $I_{\text{ср. вз}}$ – средневзвешенное значение крутизны склонов, в градусах; i_1 , i_2 , i_3 – уклоны выделяемых контуров, в градусах; S_1 , S_2 , S_3 – площади выделяемых контуров, % от общей площади.

Большое влияние на интенсивность эрозии оказывает длина склона – расстояние от водораздела до бровки элемента гидрографической сети по линии наибольшего уклона. С увеличением длины склона возрастают масса стекающей воды и энергия потока. Склоны по длине имеют 8 градаций (табл. 2), их длина существенно зависит от степени расчлененности территории [4].

· •	•	
Название склона по длине	Длина склона, м	
Чрезвычайно короткие	< 50	
Очень короткие	50-100	
Короткие	100–200	
Средней длины	200-500	
Повышенной длины	500-1 000	
Длинные	1 000–2 000	
Очень длинные	2 000-4 000	
Чрезвычайно длинные	> 4 000	

Таблица 2. Классификация склонов по длине

Проявление водной эрозии с нарастанием длины линии стока резко усиливается при большом слое осадков, высокой интенсивности их выпадения и низкой водопроницаемости почвы, когда на склоны осадков выпадает значительно больше, чем почва способна поглотить. Если осадки выпадают малым слоем и (или) небольшой интенсивности, поверхностный сток и смыв почвы может не увеличиваться с нарастанием длины склона.

Интенсивность водной эрозии почв зависит от экспозиции склона, хотя влияние ее проявляется опосредованно — из-за различий микроклимата, почв и растительности на склонах разных экспозиций. Особенно сильно влияет экспозиция на проявление эрозии от стока талых вод. При эрозии почвы в период весеннего снеготаяния закономерность влияния экспозиции склона связана прежде всего с неравномерностью распределения снега на разных частях склонов различной экспозиции. В условиях пересеченного рельефа снег аккумулируется на подветренном склоне, особенно в нижней его части, и сдувается с наветренного. Вследствие этого при снеготаянии в первую очередь освобождаются от снега нижние части склонов южных экспозиций. Здесь почва оттаивает раньше и становится доступной для смыва потоками воды, поступающей сверху. На склонах северных экспозиций в нижней их части концентрируются большие объемы снега, чем в верхней части. Потоки воды, поступающие в нижнюю часть склона, не оказывают столь разрушающего действия, как на склонах южной экспозиции, так как вода идет под снегом по промерзлой почве. Следовательно, почвенный покров склонов южной и западной экспозиций более эродирован, чем северной и восточной. При дождевой эрозии влияние экспозиции склона проявляется через разную увлажненность почв склонов различных экспозиций [6].

В условиях Беларуси количество смытых почв на склонах южных и западных экспозиций на 30 % больше, чем на северных и восточных. На склонах с крутизной 4–5° средне- и сильносмытые почвы на юго-западных экспозициях составляют 75 % от смытых почв, а на северных и восточных – не более 30 % [7, 8].

Характер проявления процессов эрозии зависит от продольных профилей склоновых земель. Разнообразие встречающихся профилей склонов можно свести к следующим основным формам – прямолинейные, выпуклые, вогнутые и ступенчатые. Сочетание этих форм представляет сложные профили – прямолинейно-выпуклые, выпукло-вогнутые и т. д.

При прямолинейном профиле и неизменной крутизне склона на всем протяжении наибольшая опасность смыва почвы возникает в нижней части склона, где формируется самый большой объем стекающей воды и максимальная скорость потока. При выпуклом профиле склона крутизна увеличивается с отдалением от водораздела, поэтому наиболее сильно эрозии подвергается также нижняя часть склона. На таких склонах наблюдается более интенсивный смыв почвы по сравнению с прямолинейными склонами, что связано с увеличением скорости и разрушительной силы водного потока. При вогнутом профиле крутизна уменьшается с отдалением от водораздела, поэтому наибольший смыв наблюдается в верхней самой крутой части склона, а в нижней части, как правило, происходит аккумуляция смытых с верхней части продуктов эрозии. Вогнутые склоны при прочих равных условиях подвергаются эрозии в меньшей степени, чем выпуклые. Показатели эрозионного потенциала рельефа нашли отражение в многочисленных эмпирических формулах смыва почвы и сложных физически обоснованных динамических моделях эрозионного процесса [9—15].

Водная эрозия почв наиболее активно развивается на пахотных землях. Установлено, что земли на склонах с крутизной до 1° представлены неэродированными и очень слабоэродированными полнопрофильными почвами. Пахотный горизонт этих почв не нарушен. На склонах крутизной $1-3^\circ$ в основном располагаются слабоэродированные почвы с величиной потенциального смыва 2,1-5,0 т/га. Пахотный горизонт (A_n) частично разрушен, к нему припахивается нижележащий подзолистый горизонт (A_2). К среднеэродированным почвам относятся земли, расположенные на склонах с крутизной $3-5^\circ$. Годовой смыв мелкозема составляет здесь 5,1-10,0 т/га, что приводит к полному разрушению пахотного горизонта, распашке подзолистого и верхней части иллювиального горизонта (B). Земли на крутых склонах ($5-7^\circ$) сильно деградированы, пахотный горизонт образован из иллювиального горизонта. Среднегодовой смыв достигает 20,0 т/га мелкозема. Очень сильноэродированные почвы располагаются на склонах с крутизной более 7° и характеризуются потенциальным смывом более 20,0 т/га в год. Пахотный горизонт их образуется из иллювиального горизонта и подстилающей породы, что ведет к формированию крайне неблагоприятных агрономических свойств почвы.

Результаты анализа морфометрии склонов сельскохозяйственных земель Беларуси показали, что 39,5 % пашни расположены на склонах с крутизной $1-3^\circ$ с колебаниями по областям от 31,8 (Брестская область) до 48,2 % (Могилевская область). Площадь пахотных земель на склонах с крутизной $3-5^\circ$ занимает по республике 19,6 %, а на склонах 5-7 и $7-10^\circ-6,1$ и 4,4 % соответственно. По административным областям удельный вес пашни на склонах $3-5^\circ$ изменяется от 8,1 (Брестская область) до 23,8 % (Витебская область), на склонах $5-7^\circ-$ от 2,0 (Брестская область) до 8,5 % (Могилевская область) и на склонах $7-10^\circ-$ от 0,2 (Брестская область) до 12,4 % (Витебская область). Склоны с крутизной $>10^\circ$ составляют по республике 2,4 % площади пашни (рис. 1).

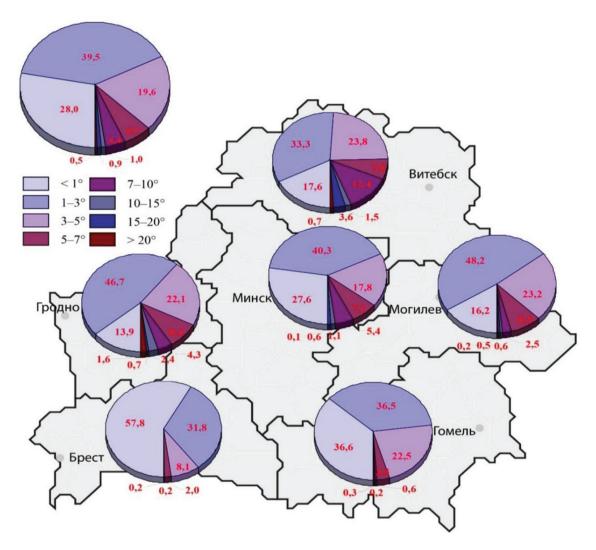


Рис. 1. Распределение склонов по крутизне на пахотных землях (в % от общей их площади)

В наибольшей степени подвержены эрозионным процессам обрабатываемые земли, расположенные на склонах с крутизной 5° и выше. Самый высокий удельный вес пахотных земель на таких склонах в Поставском (63,2 %), Браславском (52,3 %), Мозырском (49,6 %) и Городокском (44,5 %) районах, значительные площади их также в Минском (39,2 %), Мстиславском (38,7 %), Кореличском (38,5 %), Новогрудском (37,4 %), Молодечненском (37,4 %), Дятловском (35,5 %), Воложинском (34,4 %), Ушачском (30,9 %), Костюковичском (29,9 %), Чашникском (29,2 %), Логойском (27,4 %), Лепельском (27,4 %) и Мядельском (25,2 %) районах (рис. 2).

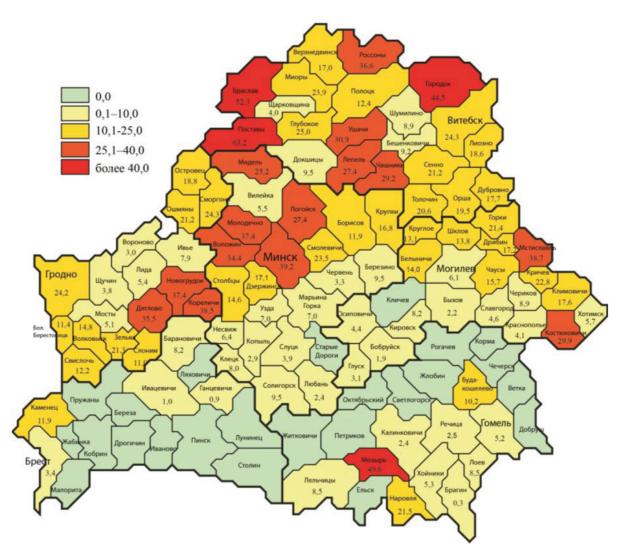


Рис. 2. Распределение площади пахотных земель (в %) с крутизной склонов выше 5° по административным районам Беларуси

Рис. 3 иллюстрирует, что 55,3 % пахотных земель республики расположены на склонах длиной более 500 м с колебаниями по областям от 27,6 % в Витебской до 79,3 % в Брестской области. Площадь земель на коротких склонах (< 100 м) составляет 13,2 %. Наибольший удельный вес пашни на склонах такой длины в Витебской (25,5 %) и Могилевской (17,2 %) областях. Как правило, короткие склоны отличаются большей крутизной. Данные морфометрии склонов луговых земель показывают, что 39,5 % их расположены на склонах с крутизной $1-3^\circ$, а по областям колеблется от 31,8 % в Брестской до 48,2 % в Могилевской области. Площадь луговых земель на склонах с крутизной $3-5^\circ$ составляет 19,6 %, на склонах $5-7^\circ$ и $7-10^\circ$ соответственно 6,1 и 4,4 % (рис. 4).

По административным областям удельный вес луговых земель на склонах $3-5^\circ$ изменяется от 8,1 % в Брестской до 23,8 % в Витебской области, на склонах $5-7^\circ-$ от 2,0 % в Брестской до 8,5 % в Могилевской области и на склонах $7-10^\circ-$ от 0,2 % в Брестской до 12,4 % в Витебской области. Склоны с крутизной > 10° составляют по республике 2,4 % площади пашни.

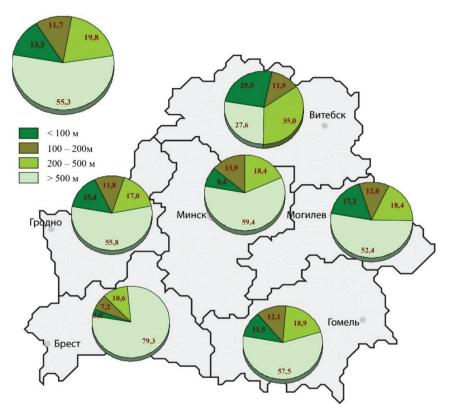


Рис. 3. Распределение склонов по длине на пахотных землях (в % от общей их площади)

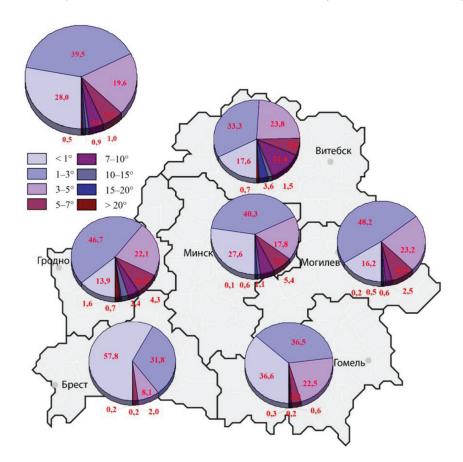


Рис. 4. Распределение склонов по крутизне на луговых землях (в % от общей их площади)

Наиболее высокий удельный вес луговых земель на склонах с крутизной 5° и выше в Россонском (36,7%), Городокском (31,7%) и Браславском (29,6%) районах, значительные площади их также в Оршанском (20,2%), Лепельском (19,4%), Глубокском (16,4%), Лиозненском (15,2%) и Чашникском (15,3%) районах. Установлено, что 82,8% луговых земель республики расположены на склонах длиной более 500 м. Колебания по областям составляют от 41,3% (Витебская область) до 100,0% (Брестская и Гомельская области). Площадь земель на коротких склонах (< 100 м) занимает по 5,5%. Наибольший удельный вес пашни на склонах такой длины в Витебской области — 18,5% (рис. 5).

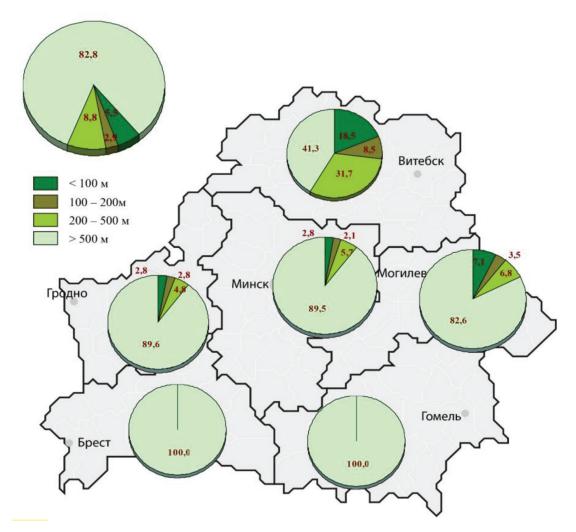


Рис. 5. Распределение склонов по длине на луговых землях (в % от их площади)

Заключение. Важнейшими показателями, влияющими на интенсивность эрозии почв, являются величины средних уклонов, длина, крутизна, форма и экспозиция склонов. Сочетание этих показателей рельефа определяет его эрозионный потенциал. На сельскохозяйственных землях республики преобладают склоны крутизной 1–3°, занимающие 39,5 % с колебаниями по областям от 31,8 % (Брестская область) до 48,2 % (Могилевская область). Площадь земель на склонах с крутизной 3–5° составляет 19,6 %, на склонах 5–7 и 7–10° соответственно 6,1 и 4,4 %, а с крутизной > 10° – 2,4 % сельскохозяйственных земель.

Наиболее подвержены эрозионным процессам обрабатываемые земли, расположенные на склонах крутизной 5° и выше. Высокий удельный вес пахотных земель на таких склонах в Поставском, Браславском, Мозырском и Городокском районах. Значительные площади их также в Минском, Мстиславском, Кореличском, Новогрудском, Молодечненском, Дятловском, Воложинском, Ушачском, Костюковичском, Чашникском, Логойском, Лепельском и Мядельском районах.

Около 55 % пахотных земель и 82 % луговых земель республики расположены на склонах длиной более 500 м. Площади пахотных и луговых земель на коротких склонах (< 100 м) занимают 13,2 и 5,5 %

соответственно. Наибольший удельный вес луговых земель на склонах такой длины в Витебской (25,5 %) и Могилевской (17,2 %) областях. Как правило, короткие склоны отличаются большей крутизной.

Список использованных источников

- 1. The state of food and agriculture // Food and Agriculture Organization of the United Nations. Rome, 2012. 166 p.
- 2. Атлас почв сельскохозяйственных земель Республики Беларусь / В. В. Лапа [и др.]; под общ. ред. В. В. Лапа, А. Ф. Черныша: Ин-т почвоведения и агрохимии. – Минск: ИВЦ Минфина, 2017. – 170 с.
- 3. Деградация почв сельскохозяйственных земель Беларуси: виды и количественная оценка / А. Ф. Черныш [и др.] // Почвоведение и агрохимия. – 2016. – № 2 (57). – С. 7–18. 4. *Заславский, М. Н.* Эрозиоведение / М. Н. Заславский. – М.: Высш. шк., 1983. – 320 с.

 - 5. *Брауде, И. Д.* Эрозия почв, засуха и борьба с ними в ЦЧО / И. Д. Брауде. М., 1965. 140 с.
 - 6. Кузнецов, М. С. Эрозия и охрана почв / М. С. Кузнецов, Г. П. Глазунов. М.: Изд-во МГУ, 1996. 335 с.
- 7. Жилко, В. В. Эродированные почвы Белоруссии и их использование / В. В. Жилко. Минск: Ураджай, 1976. –
- 8. Исторические аспекты картографирования эродированных почв и создания почвенно-эрозионной карты Беларуси / Л. И. Шибут [и др.] // Почвоведение и агрохимия. – 2020. – № 1 (64). – С. 37–45.
- 9. Wischmeier, W. H. Use and misuse of the universal soil loss equation / W. H. Wischmeier // J. Soil and Water Conserv. 1976. - № 31. - P. 5-9.
 - 10. Revised slope length factor / D. K. McCool [et al.] // Transactions of ASAE. 1989. Vol. 32 (5). P. 1571-1576.
- 11. RUSLE: Revised Universal Soil Loss Equation / K. G. Renard [et al.] // J. Soil and Water Conserv. 1991. Vol. 46 (1). -
- 12. Modeling topographic potential for erosion and deposition using GIS / H. Mitasova [et al.] // Int. J. Geograp. Inform. Sci. 1996. - № 5. - P. 629-641.
- 13. Сурмач, Г. П. Рельефообразование, формирование лесостепи, современная эрозия и противоэрозионные мероприятия / Г. П. Сурмач. – Волгоград, 1992. – 174 с.
- 14. Инструкция по определению расчетных гидрологических характеристик при проектировании противоэрозионных мероприятий на Европейской территории СССР. – Л.: Гидрометеоиздат, 1979. – 49 с.
- 15. Сухановский, Ю. П. Стохастическая модель с программным обеспечением для прогнозирования смыва почвы с пахотных земель (при весеннем снеготаянии) / Ю. П. Сухановский, А. Н. Пискунов. – Курск: ВНИИЗиЗПЭ РАСХН, 2006. – 16 c.

Поступила 19.10.2022